Let R be the region in quadrant I and II enclosed by the graphs of $y=2+\sin(x),\,y=\sec(x)$

Bases E Between cres a) Find the volume of a solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are squares.

b) Find the volume of a solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are isosceles right triangles. (base cuts between cuttes)

diameter between curves c) Find the volume of a solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are circles.

d) Find the volume of a solid whose base is R and whose cross sections cut by planes perpendicular to the x-axis are semi-circles.

$$V = \frac{1}{2}\pi \int_{A}^{B} \left(\frac{1}{2}(2+\sin x - \sec x)\right)^{2}$$

PXXXIS

12. Find the volume of the solid generated by revolving the region bounded by the curve $y = x^2$ and the lines y = 0 and x = 2 about the x-axis.

$$V = \pi \int_{0}^{2} (\chi^{2})^{2} d\chi$$

18. Find the volume of the solid generated by revolving the region bounded by the curve $y = 4 - x^2$ and the curve y = 2 - x about the x-axis.

20. Find the volume of the solid generated by revolving the region bounded by the curve $y = -\sqrt{x}$ and the line x = 0 and y = -2 about the y-axis.

$$V = \pi \int_{-2}^{0} (y^2)^2 dy$$
(radius)

20. Find the volume of the solid generated by revolving the region bounded by the curve $y = -\sqrt{x}$ and the lines x = 0 and y = -2 about the x-axis.

21. Find the volume of the solid generated by revolving the region in the
first quadrant bounded above by the line $y = \sqrt{2}$, below by the curve
$y = secxtanx$, and on the left by the y-axis, about the line $y = \sqrt{2}$.
30a. Find the volume of the solid generated by revolving the triangular region bounded by the lines $y = 2x$, $y = 0$ about the line $x = 1$.

31b. Find the volume of the solid generated by revolving the triangular region bounded by the curve $y = x^2$ and the line y = 1 about the line y = 2. 29d. Find the volume of the solid generated by revolving the triangular region bounded by the curve $y = \sqrt{x}$ and the lines y = 2 and x = 0 about the line x = 4.